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Continued studies have been undertaken to investigate and develop aerodynamic models 

that predict aircraft response in nonlinear unsteady flight regimes for transport 

configurations. The models retain conventional static and dynamic terms but replace 

conventional acceleration terms with indicial functions. In the Subsonic Fixed Wing Project 

of the NASA Fundamental Aeronautics Program and the Integrated Resilient Aircraft 

Controls project of the NASA Aviation Safety Program one aspect of the research is to apply 

these current developments to transport configurations to facilitate development of 

advanced simulation and control design technology. This paper continues development and 

application of a more general modeling methodology to the NASA Langley Generic 

Transport Model, a sub-scale flight test vehicle. In the present study models for the lateral-

directional aerodynamics are developed.  

Nomenclature 

Aj, Bj = Fourier coefficients 

a, b1  =  deficiency function parameters 

b  =  wing span, ft 

Cl,Cn,CY = rolling-moment, yawing-moment, and side-force coefficients 

c  = mean aerodynamic chord, ft 

f = frequency, Hz 

Fa =  deficiency functions 

k  =  reduced frequency, /bf V  

m = number of harmonics in Fourier expansion 

N = number of data points 

p, r = roll and yaw rates, rad/sec 

R
2
  =  multiple correlation coefficient or coefficient of determination 

s  =  estimated standard error 

S = reference area, ft
2
 

T  =  dimensional time constant, sec 

t = time, sec 

V = velocity, fps 

 = angle of attack, rad or deg 

0 = mean (nominal) angle of attack, rad or deg 

 = sideslip angle, rad or deg 

 = roll angle, rad or deg 

 = state variable 

 = standard error 
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 = dummy integration variable 

 = non-dimensional time constant, 
1

1 2V

b b

 
 
 

 

 = angular frequency, rad/sec 

 = yaw angle, rad or deg 

 

I. Introduction 

his paper is a continuation of research dealing with identification of a generic transport aircraft from wind 

tunnel data. A general model formulation of the transport aircraft is considered as a wing-tail configuration with 

unsteady and nonlinear effects on the wing and tail and their mutual interference. Theoretical background for model 

postulation can be found in reports by Jones
1
, Tobak

2
, and Klein

3
. The first results of generic aircraft transport 

aircraft identification were given by Kharabrov
4
. Presented in Ref. 4 is a state-space mathematical model of 

longitudinal nonlinear and unsteady aerodynamics from steady and oscillatory wind tunnel data. These data were 

generated at different angles of attack, frequencies, and amplitudes. The results were presented for a body, body-

wing, and body-wing-tail (baseline) configuration, in the form of graphs of aerodynamic coefficients and in-phase 

and out-of-phase components against nominal angles of attack for different amplitudes and frequencies.  

In Ref. 5 the wind tunnel data from Ref. 4 were analyzed using 

the mathematical model in Ref. 4 and the newly developed model 

based on indicial functions for the wing, the body-tail and the 

downwash angle at the tail. The two models differ mainly in the 

formulation of unsteady aerodynamics. All models with estimated 

parameters fit the measured data well, however, some unexpected 

values were obtained due to identification problems associated with 

the data. These problems were discussed in more detail in Ref. 6.  

In order to obtain an extensive and detailed aerodynamic data 

base, steady and dynamic, low-speed wind tunnel tests were 

conducted in 2001, 2003, 2007, and 2009, in the NASA Langley 

14x22 wind tunnel. Earlier experiments
7,8 

conducted in 2001 and 

2003 included lateral steady and oscillatory data but these tests 

were not designed for unsteady model identification. Oscillatory 

data were only measured at three frequencies which is insufficient 

for estimation of unsteady aerodynamic terms. 

Experiments in the last two years, included tests specifically 

designed with a range of frequencies to allow unsteady model 

identification. Testing in 2007 emphasized the longitudinal 

dynamics and in 2009 the lateral-directional case was emphasized. 

The test model used was the NASA Generic Transport Model 

(GTM) that represents a conventional twin-engine aircraft similar 

to that used in Ref. 4. A part of the 2007 data was used in Ref. 7 for 

modeling of longitudinal aerodynamics. For that study the steady data were obtained for different configurations and 

an extensive range of angles of attack. The dynamic tests included one degree-of-freedom forced oscillations around 

the pitch axis at different angles of attack, amplitudes, and frequencies. The postulated model in Ref. 5 and 6 was 

modified by defining the unsteady effect as a first-order dynamic system. A method of harmonic analysis was 

applied to measured longitudinal aerdynamic coefficients to allow estimation of the in-phase and out-of-phase 

coefficients. For estimation of parameters in the model an output error method was used that combined input and 

output time histories for each frequency into a single vector for time domain analysis.  

In this paper the problem of system identification of a transport aircraft is considered again. This time, however, 

the oscillatory data in roll and yaw are analyzed using harmonic analysis and two other estimation techniques: a 

T 

subscripts 

A = amplitude 

a  =  Y, n, or l  

 

 

Aerodynamic Derivatives 

  where , ,  or a
a
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C a Y n l
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Figure 1. Model Geometry for NASA 

experimental sub-scale aircraft.  

 

S = 5.90 ft2, c  = 0.915 ft, b = 6.85 ft 
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nonlinear regression approach in the frequency domain and an output error method in the time domain. Although 

both methods are used to estimate unsteady parameters, damping, and cross derivatives at different angles of attack 

and amplitudes, for this paper, examples mainly demonstrate yawing moment coefficient models using a nonlinear 

regression method and a frequency domain model structure. This method is offered as an efficient method to 

determine dynamic derivatives and leads to a proposal for a single model for the yawing moment coefficient in the 

unsteady region. A limited example is provided to demonstrate the output error method and time domain model 

structure. As in previous model identification work, the resulting model is checked for prediction capabilities and 

sensitivity to parameter changes.   

II. Measured Data 

In order to obtain a more extensive lateral-directional aerodynamic data base for mathematical model 

identification, wind tunnel tests were conducted in 2009 at the NASA Langley 14x22 Wind Tunnel. A 5.5% scale 

model representing a conventional twin-engine commercial transport was tested. A diagram of the model showing 

its basic geometry is given in Fig. 1. Data included both roll and yaw forced oscillation experiments over a wide 

range of frequencies and amplitudes to allow unsteady model identification. For the roll case, wind tunnel speed was 

92 fps and measurements were made for roll oscillations at angles of attack from -5 to 75 degrees, five frequencies 

of 0.06, 0.12, 0.23, 0.46, and 0.92 Hz, and four amplitudes of 5, 10, 20, and 30 degrees. For the yaw case, wind 

tunnel speed was 70 fps and measurements were made for yaw oscillations at angles of attack from -5 to 50 degrees, 

five frequencies of 0.05, 0.09, 0.18, 0.35, and 0.70 Hz, and four amplitudes of 5, 10, 20, and 30 degrees. The slower 

wind tunnel speed for yaw oscillations was used to ensure load limits for the balance were not exceeded. The 

frequencies chosen define the same non-dimensional frequencies, k=[0.015 0.028 0.054 0.108 0.215], for both roll 

and yaw tests. During the test runs data were obtained from 7 oscillation cycles for low frequency data and up to 44 

cycles for the remaining data. Data were sampled at 250 Hz with low pass 100 Hz analog filters. The resulting data 

were further filtered with a 4 Hz low pass digital filter to remove unwanted frequency content. The filter was run in 

both directions to ensure no phase error was added to the data.    

III. Mathematical Model 

The model equations for the lateral coefficients, YC , nC , and lC , represented by aC , where a = Y, n, or l, were 

developed from a general form of the indicial model equations presented in Refs. 2-3. Each coefficient is considered 

in the form 

 
0 0 0

( ) (0) ( ) ( ) ( ) ( ) ( ) ( )
2 2

t t t

a a a a p ar

b b
C t C C t d C t p d C t r d

V V
                    (1) 

where ( )aC t


, ( )ap
C t , and ( )ar

C t  are the indicial functions and  (0)aC  is the initial value of aC . Subscript a is 

used to represent Y, n, or l. Two assumptions were adopted to simplify the model: (a) the effect of angular 

accelerations p  and r  on any coefficient can be neglected and (b) the indicial functions in Eq. (1) can be expressed 

as  

 ( ) ( ) ( )a a aC t C F t
  

    (2) 

where ( )aF t


 is the deficiency function and ( )aC

  is the rate of change aC  with   evaluated in steady flow 

conditions.  

The simplified model, which takes into account changes with respect to steady state, has the form 

 
0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

t

a a a a ap r

b b
C t C t C p t C r t F t d

V V


             (3) 

To obtain a model appropriate for identification and with a limited number of parameters, the deficiency function is 

assumed to be a simple exponential function
9 
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 1b t
aF ae



  (4) 

Models appropriate for an aircraft undergoing one degree of freedom forced oscillation in roll or yaw can be 

obtained using Eqs. (3) and (4). Considering one degree of freedom rolling motion in the tunnel 

 ( ) [ ( ), ( )]a aC t C t p t  (5) 

where roll angle is related to the sideslip angle by the equation 

 1( ) sin (sin sin ( ))t t    (6) 

Combining Eqs. (3-6), the aerodynamic models can be formulated as  

 
( )1

0

( ) ( ) ( ) ( ) ( ) ( )
2

t
b t

a a ap

b
C t C t C p t a e d

V




    

       (7) 

By introducing 

 
( )1

0

( ) ( )
t

b t
t e d

    
   (8) 

and applying the Leibnitz integral rule, the state space form of Eq. (7) can be written as 

 1( ) ( ) ( )t b t t      (9) 

 ( ) ( ) ( ) ( ) ( ) ( )
2

a a ap

b
C t C t C p t a t

V
       (10) 

From Eq. (7), a steady response can be obtained
9
 as 

 ( ) sin( ) cos( )a a A a Ap
C t C t C k t


      (11) 

Where  is the amplitude of roll oscillation, k is reduced frequency, and aC


 and ap
C  are the in-phase and out-of-

phase components, respectively. These components are related to the model parameters (aerodynamic derivatives) 

by the equations
9
 

 
2 2
1

0 2 2
1

( )sin
1

a a

k
C C a

k
 





  


 (12) 

 1
02 2

1

( ) sin
1

a ap p
C C a

k





  


 (13) 

For one degree of freedom yaw oscillations in the tunnel 

 ( ) [ ( ), ( )]a aC t C t r t  (14) 

where yaw and sideslip angles are related by the equation 
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 1( ) sin ( cos sin ( ))t t     (15) 

The state space equations can be written as 

 1( ) ( ) ( )t b t t      (16) 

 ( ) ( ) ( ) ( ) ( ) ( )
2

a a ar

b
C t C t C r t a t

V
       (17) 

and the corresponding in-phase and out-of-phase components
9
 are expressed as 

 
2 2
1

0 2 2
1

( )cos
1

a a

k
C C a

k
 





  


 (18) 

 1
02 2

1

( ) cos
1

a ar r
C C a

k





  


 (19) 

IV. Model Identification 

Measured oscillatory data in roll and yaw have been obtained at different angles of attack, amplitudes and 

frequencies. From carefully designed experiments these data provide information for determining adequate models 

for the lateral aerodynamics. These models have a postulated structure with parameters that can be estimated using 

the methods discussed in this paper. The last step in model identification is model validation where the models are 

evaluated as predictors.  

A. Harmonic Analysis 

A method of harmonic analysis
10

 was applied to measured aerodynamic coefficients. A mathematical model for 

these coefficients is 

      0
1 1

cos sin              ,  or Y
m m

a j j
j j

C t A A j t B j t a l n 
 

      (20) 

where 0A , jA , and jB  are the Fourier coefficients. The analysis provides estimates of these coefficients, their 

standard errors, and the coefficient of determination, R
2
. For the model with linear aerodynamics and 0A  = 0, the 

aerodynamic in-phase and out-of-phase components can be expressed in terms of the coefficients 1A and 1B . For the 

roll oscillation case the expressions are 

 1
a

A

B
C

 
  (21) 

 1
ap

A

A
C

k
  (22) 

and for the yaw oscillation case the expressions are  

 1
a

A

B
C

 
  (23) 
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 1
ar

A

A
C

k
  (24) 

where  is related to  and  by Eqs. (6) and (15).  

The coefficient of determination, R
2
, indicates the fraction of the variation in the measured data explained by the 

model and is defined as 

 2 21 /SS             0 1E rR SS R     (25) 

where 

 2

1

ˆ[ ( ) ( )]
N

E a aE
i

SS C i C i


   (26) 

is the residual sum of squares and 

 2

1

[ ( ) ( )]
N

r a aE
i

SS C i C i


   (27) 

is the total sum of squares. ˆ( ), ( ),a aE
C i C i and ( )aC i  are the measured, estimated, and mean values, respectively. 

Harmonic analysis was performed 

on roll and yaw oscillatory data with 

amplitudes of 5º, 10º, 20º, and 30º. 

Example results of the analysis are 

presented in Figs. 2 and 3 for 

amplitudes A = 20º and A = 20º, 

respectively. These plots show both in-

phase and out-of-phase components 

and the coefficient of determination 

against angle of attack at different 

frequencies. Ordinate values were 

removed in order to maintain 

proprietary agreements. In both sets of 

results, the in-phase components show 

no dependence with frequency and 

therefore no unsteady aerodynamic 

effect. For the out-of-phase 

components, frequency dependence 

occurs for angles of attack between 24º 

to 30º for l p
C  and between 20º to 30º 

for nr
C . For higher angles of attack 

the unsteady effect is very small and 

not significant for both coefficients.  

Figures 2 and 3 reveal very large variation in R
2
 for angle of attack above 20° for Cn and mostly above 18° for  

Cl. As follows from Eqs. (25) to (27), the estimates of R
2
 are influenced by the value and number of Fourier 

coefficients (harmonic order) in Eq. (20) and the measurement noise in ( )aE
C i . Because the Fourier coefficients are 

mutually orthogonal, the estimates of jA  and jB  will not change with the number of coefficients included in Eq. 

(20). Changes will only appear in the corresponding standard errors and residuals defined by Eq. (26). This makes 

R
2
 an effective diagnostic tool to discern the adequacy of a linear first-order model against nonlinear higher 

harmonic models.  

Figure 2. Harmonic analysis for rolling-moment coefficient, roll 

oscillations, °.  

 

 

f (Hz) 

0 10 20 30 40 50 60 70
 

 

 

 

 C
lp

 

 

0 10 20 30 40 50 60 70
 

 

 

 C
l

 

 

0.06

0.12

0.23

0.46

0.92

0 10 20 30 40 50 60 70
0

0.5

1

R
2

 , deg

 

 



 

American Institute of Aeronautics and Astronautics 

 

7 

Figure 4 shows measured ( )nC   

time histories, in phase plane format, for 

one oscillation cycle at 0 = 30º, f = 0.18 

Hz, and A = 20 degrees. The single 

oscillation cycle shown with “+” signs is 

the mean cycle of all the measured data. 

An estimated 3
rd

 order harmonic model 

is shown as a solid line. The cubic model 

fits the measured data well and an R
2
 = 

0.81 suggests this is an adequate model. 

A first order model produces R
2
 = 0.55 

and implies that a higher order model is 

required in this case. When using R
2
 to 

assess model order adequacy 

measurement noise is a confounding 

factor. Consequently, the R
2 

threshold 

for an adequate model can be lower as 

the severity of measurement noise 

increases. The noise and repeatability of 

each oscillation measurement is 

demonstrated in Fig. 5, showing the 

same case as Fig. 4 but with all 

oscillation cycles included. The average 

measurement standard error is 

approximately 0.004 at each point in the 

cycle. This is a relatively large number 

for measurements with an approximate 

maximum range of ± 0.01 from the mean 

at each point in the cycle. Extending this 

analysis over the full range of nominal 

angles of attack, 0 , at the same 

amplitude and frequency (f = 0.18 Hz, 

A = 20 degrees), Fig. 6  shows variation 

of R
2
 with the number of harmonics. 

Poor model adequacy is indicated for 1
st
 

and 2
nd

 order models for 0 > 22º, 

however, acceptable model adequacy is 

achieved with 3
rd

 order models. Low R
2
 

values for the cubic models, for example 

at 0 = 24º or 40º, are due to high 

measurement noise levels and poor 

signal-to-noise ratio. At 0 = 40º the 

average measurement standard error is 

approximately 0.008 at each point in the 

cycle. This is twice the noise level found 

at 0  = 30º. Fig. 7 shows variation of R
2
 

with amplitude and frequency for the 

nominal angle of attack at 0  = 30º and 

for 1
st
 order harmonic models only. As 

expected, larger amplitude oscillations 

produce more nonlinear responses and 

therefore lower values of R
2
. Less obvious is the strong correlation of lower R

2
 values with lower frequency. This 

relationship is explained using nonlinear models in the next section under Output Error analysis. From the harmonic 

analysis, as shown in Figs. 2 to 7, aerodynamic model structures for nC and lC can be characterized in the following 

way: 

Figure 3. Harmonic analysis for yawing-moment coefficient, 

yaw oscillations, °.  
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a.) Conventional linear models without an unsteady component are adequate for yawing moment models where 

0  <  20º. Similarly, a conventional linear model structure without an unsteady component applies to rolling 

moment models where 0  ≤ 10º. Outside of these regions one of the three model components in Eqs. 10 and 

17  (steady aerodynamics, steady-flow damping, unsteady aerodynamics) may require a nonlinear model 

structure.  

b.) The strongest presence of unsteady aerodynamics are found in the yawing moment response for 20º ≤ 0  ≤ 

30º and in rolling moment response for 24º ≤ 0  ≤ 30º.  

c.) Final assessement of each model component is made in the next section under Output Error analysis where 

relative magnitudes of the model terms are compared.  

 

 

 

B. Parameter Estimation 

Parameter estimation was accomplished using two techniques: a nonlinear regression (NR) method in the 

frequency domain, and an output error (OE) method in the time domain. Both techniques are explained in Ref. 11 

where the relevant computer programs are available. For the NR analysis only the out-of-phase component data 

were used in conjunction with Eq. (13) for roll motion and Eq. (19) for yaw motion. In-phase components were not 

used in the calculations because of the significant lack of frequency dependence. For the OE approach the model 

equations are given by Eqs. (9-10) for roll motion and Eqs. (16-17) for yaw motions. Measured  inputs,  , and 

outputs, aC , for each of the five frequencies tested, were stacked to ensure all the frequency content was included in 

the time domain estimation process.  

As a practical matter to limit discussion in this paper, estimation results are presented with a focus on developing 

linear unsteady models for yawing moment using the NR method. The final model proposed is offered to represent 

the unsteady aerodynamic behaviors for the yawing moment over the region of angle of attack, 20º ≤ 0  ≤ 30º, with 

unsteady aerodynamic response.  

Figure 7. Variation of R
2
 for yawing moment coefficient with oscillation 

amplitude and frequency, (°, harmonic order = 1). 
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1. Nonlinear Regression 

To demonstrate the NR technique, results addressing the damping-in-yaw case are presented. Model structure is 

defined by Eq. (19) and for this case takes the form  

 1
02 2

1

( ) ( ) cos ( )           1, 2,...,
1 ( )

n nr r
C j C a j j m

k j


 


    


 (28)  

In this formulation nr
C is the measured dependent variable, k is the regressor, a, , and ( )nr

C   are the unknown 

parameters, and is the measurement noise. A potentially useful observation can be taken from Eq. (28) by 

considering the limiting case for k → ∞. In this case as k becomes large, the out-of-phase component, nr
C , 

approaches ( )nr
C   in value. This suggests a unique method for an experimenter to estimate ( )nr

C   by just testing 

at sufficiently high frequency. Figure 8 provides evidence that a limiting value is approached for higher frequencies. 

Shown in Fig. 8 are the variations of out-of-phase components, nr
C , with frequency and angle of attack for large 

amplitude (°) yaw oscillatory data. Figure 9 demonstrates the limiting relationship, ( )n nr r
C C  , is a 

reasonable assumption for the cases considered. Shown are estimated damping parameters using yaw oscillatory 

data in the unsteady region (20° <  < 30°) with four different amplitudes. The solid diagonal line shows the exact 

values for which ordinate and abscissa values are equal.   

Parameter estimates and their 2- error bounds for the model in Eq. (28) are shown in Fig. 10. The results show 

low standard errors for parameters ( )nr
C  , a, and  over the range of angle of attack with unsteady responses. At 

0  = 26º some larger error bounds occur in ( )nr
C   and a. This corresponds to the lower R

2
 values from harmonic 

analysis which infer the likelihood of nonlinear behaviors. ( )nr
C  is relatively constant over this range of 0, 

however parameter a trends toward zero for 0 < 20º, reflecting the lack of unsteady behavior in that flight regime. 

Poor parameter accuracy for nondimensional   at 0 < 20º also reflects the lack of unsteady behavior. 

2. Output Error 

Both estimation methods (NR and OE) used in this study are nonlinear estimation methods and both have been 

applied to estimate parameters associated with linear aerodynamic model structures. Both methods can also be 

applied to estimate all damping and cross derivatives terms. However, when nonlinear model structures are required 

the OE method must be applied. To demonstrate the OE method, only one example is considered where the static 

term is replaced by a cubic polynomial. Reference 12 provides a full description of the more general nonlinear case 

using OE.   

Figure 8. Variation of out-of-phase components 

with frequency and angle of attack. Yaw 

oscillatory data, °. 
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The linear model structure is defined by Eqs. (16-17) and for this case the state space equations can be written as 

 1( ) ( ) ( )t b t t      (29) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )          1, 2,...,
2

n n nr

b
C i C i C r i a i i i N

V
          (30) 

Replacing the static term by a cubic polynomial in  is suggested by the harmonic analysis results that showed 

improved R
2
 for a 3

rd
 order harmonic model. For this case, an adequate model was achieved by allowing a cubic 

polynomial model structure for the static term while retaining a linear structure for the two dynamic terms.  

The OE method requires an initial guess of the four unknown parameters ( ( )nC

 , ( )nr

C  , a , 1b ) in Eqs. (29-

30) to start the optimization process. If a four term cubic polynomial is used for the static term then the number of 

unknowns is seven. When static data or NR estimates are available these values can be used directly as initial values 

otherwise engineering estimates are required to provide starting values. To simplify obtaining the intial parameter 

values and the general estimation process, starting with linear model first works well. For the more general model, a 

three-stage estimation process is used. In the first stage only static terms are estimated. In the second stage the static 

terms are fixed and only dynamic terms are estimated. In the final stage, all the terms are estimated using the 

estimates from stage one and two as the starting values.  

For the yawing moment the underlying static curve, 0( ; , )nC   , changes significantly when moving from low 

to high angles of attack. Figure 11 shows these static curves for three different 0 = [14º, 20º, 40º]. For the lower 0 

the change in 0( ; , )nC    is linear over a relatively wide range of , however, for 0 ≥ 20º a significant cubic 

nonlinearity develops near  = 0 and 0( )nC

  changes slope from positive to negative. Incorporating a cubic static 

term into the model structure of Eq. (30) while maintaining the linear terms for both steady flow damping and 

unsteady terms allowed estimation of improved models. An example of the improved model fit to the data is shown 

in Fig. 12 for the case where ° and 0 = 26º.  This case was chosen due to the very low values of R
2
 obtained 

during harmonic analysis, where the low values at low frequency (see Fig. 3) implied that linear model adequacy 

was very poor. Using the OE method for the same case and forcing a linear model structure for all terms produced 

R
2 

= 0.34 and a poor fit between measurements and computed responses, especially at lower frequencies. After 

allowing a cubic static nonlinearity in the model structure the fit improved so that R
2 
increased to 0.58, an acceptable 

value given the relatively poor signal/noise conditions for this case. The severity of the noise can be observed in the 

low frequency case (upper left hand graphic) of Fig. 12 where the respone for lower frequencies approach a quasi-

static response and more closely follow the underlying static curve. The dominating effect of the damping terms can 

be seen in the high frequency case (lower right graphic) where the effects of the underlying cubic static curve are 

almost removed. The dominating effect of the steady damping term over the static term at high frequency also 

Figure 10. Unsteady model parameters from 

NR method for yaw oscillatory data, A=20º.  
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explains the observation made in the harmonic analysis section that reduced R
2
 values (less linear response) occur 

with lower frequencies.  

A key aspect of this 

system identification 

problem is determining 

the appropriate model 

structure. In an effort to 

obtain a parsimonious 

model it is useful to 

approach the system 

identification problem 

using linear model 

structures to determine 

their efficacy first so 

model complexity is only 

applied where necessary. 

The analysis so far has 

produced appropriate 

models that can be readily 

used for simulation and 

control design. However, 

engineering judgment is 

required to assess the 

utility of the added 

complexity. This may 

require piloted simulation 

to determine the ultimate 

efficacy of a linear or 

nonlinear unsteady 

model. However, a quick 

evaluation of the model can be 

done by considering each 

terms’ relative contribution to 

the total force or moment. 

Shown in Fig. 13 are the three 

components of Eq. (30) for the 

yawing moment using the 

same model parameters as 

used for Fig. 12. Specifically, 

the cubic static term, 

( , )nC  , steady flow 

damping, ( )nr
C  , and 

unsteady component, * ( )a t , 

are each plotted separately to 

show their relative 

contribution to the total 

response seen in Fig. 12. In 

Fig. 13, one can observe for 

this aircraft configuration, that 

for the lower frequencies the 

static terms will dominate the 

response and at high 

frequencies the steady flow 

damping term will dominate. 

In the mid-frequencies the 

Figure 12. Variation of Cn under forced oscillation in yaw. Six cycles of 

measured and OE model responses are shown for at 0  = 26º, °, 

f= 0.09, 0.18, 0.35, and 0.70Hz. 
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unsteady component makes a 

contribution comparable to the 

steady flow damping term. These 

results indicate an approach that 

can be used to estimate higher 

fidelity models with nonlinear 

components if required. 

Engineering judgment is required 

to determine if the added 

complexity is needed.  

C. Model Validation 

In this study, the focus was to 

introduce a nonlinear regression 

method and frequency domain 

model to allow estimation of linear 

unsteady aerodynamic models for 

aircraft. Satisfaction of an adequate 

model is achieved by 

demonstrating good fit to the 

measured data used in estimation 

and an ability to predict on other 

data. Figure 14 shows out-of-phase 

component measurements, nr
C ,  

and computed values determined from the estimated model. The comparison shows a tendency to a better fit at the 

lower frequencies, however, differences at higher frequencies shown in Fig. 14 did not produce a large error in the 

total yawing moment. Because of the relatively smaller contribution of the unsteady component in general and in 

particular at higher frequencies, it seems reasonable to postulate using an “average” unsteady model over the entire 

unsteady region. The “average” unsteady model was created by taking the average of each NR model parameter 

estimate over the six 0 cases 

considered in the angle of attack range, 20º ≤ 0 ≤ 30º. The linear model static term for the “average” model was 

taken from an average of the OE linear model estimates. As an example, in Fig. 15 model performance is evaluated 

by comparison of the “average” model prediction of nr
C values plotted with estimated or “computed” model values 

and measured values at each frequency, for 0 = 28º. An additional check of this new “average” model’s predictive 

Figure 15. Measured, computed, and predicted 

values of nr
C for yaw oscillatory data, 0 = 28º, 

°. 
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capability is shown in Fig. 16 where a phase-plane plot for the same 0 = 28º case, and f = 0.7 Hz, is shown. In this 

figure measure data for several oscillations are shown with the “average” model prediction shown as the solid line. 

The dashed static line, showing a cubic polynomial shape, is provided for reference. However, the cubic static term 

was not used in the “average” model. The graphic shows a reasonable prediction of the response by the “average” 

linear model.  

V. Concluding Remarks 

This paper expands on previous model identification work using the NASA Generic Transport Model. The 

emphasis for this paper was on modeling methodology rather than an extended presentation of specific modeling 

results. Tests in the NASA LaRC 14x22 wind tunnel provided forced oscillation data in roll and yaw over extended 

range of angle of attack, frequency, and amplitude.  

A method of harmonic analysis, used as an analysis and diagnostic tool, revealed the dependence of conventional 

damping terms (in-phase and out-of-phase components) and coefficient of determination on angle of attack, 

frequency, and amplitude of oscillation. Behavior of the coefficient of determination was discussed and used to aid 

in selection of a parsimonious model structure.  

Mathematical model formulations were proposed for one-degree-of freedom rolling and yawing motion with 

linear unsteady aerodynamics. Two approaches were presented and application was demonstrated using the yawing 

motion coefficient. One approach used nonlinear regression and a frequency domain model structure. This approach 

was proposed as a simple and efficient method to model the unsteady aerodynamic behavior for this aircraft. 

Because estimates of the in-phase component showed no significant variation with frequency, only out-of phase 

components were used. Linear unsteady models were identified and presented for the yawing moment coefficient 

over the range of alpha where unsteady behaviors occurred. Each model included estimates of a damping derivative 

and two parameters of the deficiency function. A single model for the entire unsteady region was also suggested as a 

potential candidate. Using the model formulation for the nonlinear regression method, it was shown that with 

increasing frequency the out-of-phase components approach the steady values of the corresponding damping 

derivatives. 

A second approach presented used an output error estimation method and a time domain model structure in state-

space format. This approach includes parameters for both static and dynamic parameters and can accommodate 

nonlinear behaviors. An example was presented for a case where static nonlinear behavior was found in the 

aerodynamic coefficient with respect to sideslip. An approach is suggested for evaluating the necessity of this added 

complexity.   

Application of this modeling methodology will allow identification of unsteady models from static and dynamic 

wind tunnel data. These models will support advanced simulations of transport aircraft throughout the flight 

envelope and in turn facilitate advanced aircraft control designs that provide stability and control in difficult flight 

regimes.  
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